56 research outputs found

    Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors.

    Get PDF
    Benzodiazepines can ameliorate social disturbances and increase social competition, particularly in high-anxious individuals. However, the neural circuits and mechanisms underlying benzodiazepines' effects in social competition are not understood. Converging evidence points to the mesolimbic system as a potential site of action for at least some benzodiazepine-mediated effects. Furthermore, mitochondrial function in the nucleus accumbens (NAc) has been causally implicated in the link between anxiety and social competitiveness. Here, we show that diazepam facilitates social dominance, ameliorating both the competitive disadvantage and low NAc mitochondrial function displayed by high-anxious rats, and identify the ventral tegmental area (VTA) as a key site of action for direct diazepam effects. We also show that intra-VTA diazepam infusion increases accumbal dopamine and DOPAC, as well as activity of dopamine D1- but not D2-containing cells. In addition, intra-NAc infusion of a D1-, but not D2, receptor agonist facilitates social dominance and mitochondrial respiration. Conversely, intra-VTA diazepam actions on social dominance and NAc mitochondrial respiration are blocked by pharmacological NAc micro-infusion of a mitochondrial complex I inhibitor or an antagonist of D1 receptors. Our data support the view that diazepam disinhibits VTA dopaminergic neurons, leading to the release of dopamine into the NAc where activation of D1-signaling transiently facilitates mitochondrial function, that is, increased respiration and enhanced ATP levels, which ultimately enhances social competitive behavior. Therefore, our findings critically involve the mesolimbic system in the facilitating effects of diazepam on social competition and highlight mitochondrial function as a potential therapeutic target for anxiety-related social dysfunctions

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression

    Safety out of control: dopamine and defence

    Full text link
    corecore